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We consider the two-dimensional Ising model on an infinitely long cylinder and study the probabilities pi to
observe a given spin configuration i along a circular section of the cylinder. These probabilities also occur as
eigenvalues of reduced density matrices in some Rokhsar-Kivelson wave functions. We analyze the subleading
constant to the Rényi entropy Rn=1 / �1−n�ln��ipi

n� and discuss its scaling properties at the critical point.
Studying three different microscopic realizations, we provide numerical evidence that it is universal and
behaves in a steplike fashion as a function of n with a discontinuity at the Shannon point n=1. As a conse-
quence, a field theoretical argument based on the replica trick would fail to give the correct value at this point.
We nevertheless compute it numerically with high precision. Two other values of the Rényi parameter are of
special interest: n=1 /2 and n=� are related in a simple way to the Affleck-Ludwig boundary entropies
associated to free and fixed boundary conditions, respectively.
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I. INTRODUCTION

The entanglement �or Von Neumann� entropy is, in gen-
eral, a difficult quantity to compute in two-dimensional �2D�
quantum lattice models.1 In Ref. 2 it was, however, shown
that for a particular type of wave functions, of type dubbed
“Rokhsar-Kivelson” �RK�, and for particular geometries, the
calculation simplifies considerably. A lattice model of statis-
tical mechanics can be used to define a Rokhsar-Kivelson
wave function as follows:3,4

�RK� =
1

�Z�
c

e−1/2E�c��c� , �1�

where the sum runs over the classical configurations and
E�c� is the energy associated to c �interactions are assumed
to be short ranged�, and the normalization factor involves the
classical partition function Z. For such a state, it has been
shown in Ref. 5 that the eigenvalues of the reduced density
matrix of a semi-infinite cylinder �with a finite circumference
L, see Fig. 1� are simply the classical probabilities pi to ob-
serve a given configuration i at the boundary between A and
B. In turn, these probabilities can be obtained from the domi-
nant eigenvector of the transfer matrix of the classical model.
So, the complete entanglement spectrum is encoded in the
dominant eigenvector of the classical transfer matrix.6 In this
work, we concentrate on the situation where the classical
model is a two-dimensional Ising model. Each probability pi
is therefore associated to a given configuration i of the spins
along the “ring” of length L which separates the regions A
and B �Fig. 1�. Specifically, we are interested in the behavior
of the Rényi entropies

Rn�0 =
ln�Zn�
1 − n

Zn = �
i

pi
n, �2�

including its limit

lim
n→1

Rn = − �
i

pi ln�pi� , �3�

which is the Shannon entropy �or Von Neumann in the
quantum/RK point of view5�.

As discussed in previous studies,5,7,8 Rn�T ,L� scales lin-
early with perimeter L of the cylinder, even at the critical
temperature. However, the most interesting piece of informa-
tion is the first subleading correction, rn�T�. For a given tem-
perature T, the later is defined through an expansion of
Rn�T ,L� for large L

Rn�T,L� � an�T�L + rn�T� + o�1� �4�

and is of order 1.9 Contrary to the coefficient an, rn has been
argued to be universal. In the case of Ising models, r1�T
�Tc�=0 in the high-temperature phase and r1�T�Tc�
=ln�2� in the low-temperature phase.5 At the critical point,
the previous numerical calculations �up to L=36� lead to
r1�T=Tc��0.2544.10 The numerical results presented in Sec.
II significantly increase the precision on this number:
r1�Tc�=0.2543925�5�. Furthermore, we confirm its universal
character by checking the agreement between three micro-
scopically different realizations of the 2D critical Ising mod-
els: on the square and triangular lattices, and using the Ising

|i〉 Ly → ∞

B

A

L

FIG. 1. �Color online� Cylinder geometry with Ly �L. A prob-
ability pi is associated to each spin configuration i of the boundary
�red circle� between A and B.
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chain in transverse field �ICTF�. At present, we are not aware
of any field-theory method which is able to compute this
number.

In Sec. III we analyze the finite-size scaling of r1�� ,L� in
the vicinity of the critical point, using numerical �but exact�
calculations for the ICTF. There, the parameter � measures
the ratio of the spin-spin interaction over the strength of the
external magnetic field and plays the role of the temperature
in the classical Ising model. Away from �=�c, we conclude
that r1�� ,L� only depends on L��−1� in the critical regime,
which is consistent with a correlation length diverging as
1 / ��−1� close to the critical point �located at �c=1�. In
particular, we confirm the steplike shape of r1�� ,L=��.

In Sec. IV we analyze the finite-size scaling of rn��=�c
=1,L� in the vicinity of n=1 /2 and n=1, again with the
ICTF �up to L=44 sites�. The case n=1 /2 turns out to be
exactly solvable �Sec. IV B� and related to the “ground-state
degeneracy” for a critical Ising model with free boundary
conditions, as discussed by Affleck and Ludwig.11 In the vi-
cinity of n=1 the numerical data strongly suggests a steplike
shape of rn��=1, L=�� as a function of the Rényi param-
eter n: rn��=1, L=��=0 for n�1 and rn��=1, L=��
=ln 2 for n�1. This result has some important consequence
regarding possible field-theory approaches. In particular, a
singularity at n=1 would invalidate any attempt to compute
r1 from a naive analytical continuation to n=1 of the n
�N� result �replica trick�.

II. SHANNON ENTROPY AT THE CRITICAL POINT

A. Square and triangular lattices

We compute the Shanon entropy R1 using the transfer
matrix T of the ferromagnetic Ising model. We numerically
diagonalize T �in the full space of dimension 2L�, on the
square and on the triangular lattices12 for sizes up to L=14
and denote by �L� and �E� the left- and right-dominant eigen-
vectors of T �corresponding to the eigenvalue with the largest
modulus�. Then, the probability pi of a configuration i is
given by

pi =
�L�i��i�R�

�L�R�
�5�

in the limit of a infinitely long cylinder Ly �L.
The results for R1�Tc�, obtained by summing over the 2L

configurations, are shown in Fig. 2. The linear behavior,
R1�Tc�	L is apparent, as well as the fact that the data for the
two lattices extrapolate to the same value �0.254 at L=0.
Although the systems are relatively small, it shows that
r1�Tc��0.254 does not depend on the microscopic lattice
geometry and is therefore very likely to be universal.

B. Ising chain in transverse field

As a third microscopic realization of the Ising 2D univer-
sality class, we study the ICTF

H = − ��
j=0

L−1

� j
x� j+1

x − �
j=0

L−1

� j
z. �6�

This Hamiltonian proportional to the logarithm of the
transfer matrix of an anisotropic Ising model on the square
lattice with couplings along the y direction �“time”� which
are much stronger than in the x direction �“space”�.

This Hamiltonian is transformed into a free-fermion prob-
lem using the standard Jordan-Wigner transformation. The
later free-fermion problem is then diagonalized using a Bo-
goliubov transformation. The ground state of H is then de-
scribed as the vacuum of the Bogoliubov fermions. The criti-
cal point is located at �=1. For ��1 the system is in the
ordered phase with spontaneously broken Z2 symmetry
���x��0� and for ��1 the system is in the disordered �para-
magnetic� phase.

It turns out that the ground state �G� of the chain is sim-
pler to express in �z basis. For an Ising spin configuration �i�
labeled by the variables �i

z= �1, the probability at �=1 is

pi = ��i�G��2 = p��0
z , . . . ,�L−1

z � = det M , �7�

where M is an L	L matrix defined by

Mj� =
1

2

 j� +

�− 1� j−�� j
z

2L sin
�� j − � +
1

2
�/L . �8�

This result is derived in Appendix, where the noncritical case
��1 is also considered. However, going back to the initial
2D classical model, the actual spin directions are measured
by �i

x. So, we first compute an entropy Rn
�z� corresponding to

probabilities of z-axis configurations, and then use the
Kramers-Wannier duality transformation13 to obtain the de-
sired Rn=Rn

�x�

Rn
�x���� = Rn

�z��1/�� + ln 2. �9�
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FIG. 2. Shannon entropy R1�Tc ,L� of the Ising models at the
critical point, plotted as a function of L �a linear term, −0.41L, has
been subtracted for clarity�. Data for the square and triangular lat-
tices and for the Ising chain in transverse field are compared. The
data are well reproduced by R1�L��aL+r1+b /L and the sublead-
ing constant r1 is evaluated using the three largest sizes. Each line
represents the leading term and the constant, aL+r1. The subleading
term appears to be the same r1�0.254 for the three microscopic
models.
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The calculation of Rn
z amounts to compute 2L probabili-

ties, each of which is obtained as a determinant of size L
	L. Using the translation invariance and the reflection sym-
metry of the chain, the number of probabilities to compute
can be reduced to 	2L / �2L�.14 To do so we generate one
representative for each orbit of spin configurations �under the
action of the lattice symmetries� using the “bracelets” enu-
meration algorithm of Ref. 15. For the largest size, L=44,
computing all the probabilities �2L=1.7	1013� required
about 1000 h of CPU time on a parallel machine.

The data for the Shannon entropy R1 are plotted in Fig. 2
and given in Table I. They significantly extend the results
published in Ref. 5. The columns r1

�1�, r1
�4�, and r1

�5� corre-
spond to three different ways to extract the subleading con-
stant from R1��=1,L� with three different types of fits �de-
tails in the table caption�. In all cases the result rapidly
converges and, using the largest size �L=44 spins� we esti-
mate that r1=0.2543925�5� at L=�.

III. � AWAY FROM THE CRITICAL POINT

In this section, we investigate the behavior of r1 in the
vicinity of the critical point, by considering the Ising chain in
transverse field away from �=1. The results are summarized
in Fig. 3.

In this plot, r1��� is extracted from R1�L ,�� using a fit to
a1���L+r1���+b1��� /L with three consecutive values of L.
For the size we have studied �here L�38�, there is still some
visible finite-size effects. In particular, the marked oscilla-
tions in the vicinity of �=1 are not converged to the L=�
limit. In fact, it is reasonable to expect the curves to gradu-

ally approach a steplike function as L increases: r1=0 for
��1 and r1=ln�2� for ��1.

This scenario, anticipated in Ref. 5, is corroborated by the
scaling shown in the inset of Fig. 3. When plotted as a func-
tion of ��−1�L, the data for different system sizes and dif-
ferent values of � collapse onto a single—and very likely
universal—curve. This can be understood from the fact that
the correlation length  of the Ising model diverges as
1 / ��−1� at the transition, and if one assumes that r1 is a
function of L /��� in the critical region. If correct, it imme-

TABLE I. Shannon entropy R1�L ,�=1� of the critical Ising chain in transverse field as a function of the
system size L. The subleading constant r1 is extracted using three different fits: r1

�1� is obtained by a fit to
R1�L��aL+r1+bL−1 using the three following system sizes: L ,L−2,L−4. r1

�4� is obtained by a fit to
R1�L��aL+r1+bL−1+ ¯eL−4 using the six system sizes L ,L−2, . . . ,L−10. r1

�5� is obtained by a fit to
R1�L��aL+r1+bL−1+ ¯ fL−5 using the seven system sizes L ,L−2, . . . ,L−12. a is the coefficient of the
extensive �and nonuniversal� term, extracted from the seven-point fit above. From this analysis, our best
estimate for L=� is r1=0.2543925�5�.

L R1�L� a1 r1
�1� r1

�4� r1
�5�

16 7.02789845748593 0.4232735600 0.2544012149 0.2543924985 0.2543925471

18 7.87432026832476 0.4232735603 0.2543983072 0.2543925177 0.2543925302

20 8.72076710746883 0.4232735604 0.2543965648 0.2543925180 0.2543925183

22 9.56723215961776 0.4232735605 0.2543954570 0.2543925156 0.2543925130

24 10.4137108773778 0.4232735605 0.2543947190 0.2543925136 0.2543925110

26 11.2602001105626 0.4232735606 0.2543942083 0.2543925110 0.2543925072

28 12.1066976079502 0.4232735605 0.2543938437 0.2543925139 0.2543925188

30 12.9532017180203 0.4232735608 0.2543935763 0.2543925001 0.2543924741

32 13.7997112017585 0.4232735600 0.2543933760 0.2543925306 0.2543925939

34 14.6462251114521 0.4232735614 0.2543932227 0.2543924796 0.2543923635

36 15.4927427098430 0.4232735597 0.2543931036 0.2543925326 0.2543926640

38 16.3392634147881 0.4232735610 0.2543930095 0.2543925037 0.2543924262

40 17.1857867605076 0.4232735606 0.2543929343 0.2543924999 0.2543924890

42 18.0323123698967 0.4232735603 0.2543928734 0.2543925161 0.2543925658

44 18.8788399343835 0.4232735602 0.2543928237 0.2543925300 0.2543925757
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FIG. 3. �Color online� Subleading constant r1 of the Shannon
entropy of the Ising chain as a function of �. The critical point
corresponds to �=1. Inset: r1��� for different system sizes, plotted
as a function of ��−1�L.
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diately implies that r1��� is a steplike function in the ther-
modynamic limit.

IV. RÉNYI ENTROPY AWAY FROM n=1

We now consider the effect of changing the Rényi param-
eter n. When 2n is an integer, Rn has an interpretation in
terms of the free energy of k=2n semi-infinite Ising models
which are “glued” together at their boundary �see Fig. 4�.

Using the transfer matrix point of view, it is simple to see
that pi

k/2 is �proportional to� the probability to observe the
spin configuration i on a circle along which k Ising models
�defined on semi-infinite cylinders� are forced to coincide.
This was used in Refs. 7 and 8 in some field-theory calcula-
tions, but it is also true at the microscopic level. The inter-
pretation above does not apply when 2n is not a positive
integer, but Rn�L ,�� can still be computed numerically for
any n�0.

A. Rényi parameter n=2 and above

When n goes to infinity, only the spin configuration with
the largest probability contributes to Rn. For the ferromag-
netic Ising models we consider �including the quantum chain
in transverse field�, this configuration is twofold degenerate
and corresponds to a fully polarized ferromagnetic state,
�↑↑¯↑� or �↓↓¯↓�. In other words, taking the limit n
→� amounts to study a semi-infinite Ising model with fer-
romagnetic boundary conditions. The corresponding prob-
ability, pmax, behaves as −ln�pmax�	aL+ln�2� at the critical
point.5 The subleading constant, ln�2�, is nothing but �twice�
the “g factor” associated to this conformally invariant bound-
ary condition �more details in Sec. IV B�. This implies for
the Rényi entropies that the subleading constant rn��c� is
ln�2� at n=�.

In fact, for n�2 the Fig. 5 shows that even relatively
small systems give rn��c� very close to ln2. Table II is an
analysis showing that r2��=1�� ln 2 with a great accuracy,
on the order of 10−8. Since the convergence to ln2 is even
faster when n�2, there is practically no doubt that rn��c� is
exactly ln2 for n�2.16

As a consequence, an analytical continuation of this result
to n=1 would erroneously give r1��c�=ln 2 �instead of
0.25439�. In particular, we note that the results of Ref. 8
�which use a replica technique� are in agreement with ours
for n�1, but not at n=1.

B. n= 1
2

The special value n= 1
2 corresponds to the free energy of a

single Ising model defined on a semi-infinite cylinder �keep-
ing only part A in Fig. 1� and can be treated exactly. Using
the transfer matrix point of view, it is indeed simple to see
that �pi is proportional to the probability to observe the spin
configuration i at the edge of a semi-infinite Ising model
�contrary to pi which is the probability to observe i in the
bulk�.

As far as the universal properties are concerned, we can
study the ground state of the quantum Ising chain �Eq. �6��
rather than the transfer matrix of the classical 2D model.
Denoting by �G� the ground state of the chain, we have
�pi= �G � i� and the Rényi entropy R1/2 can be written as

R1/2�L� = 2 ln��G� �
��i

x=�1�

��1
x, . . . ,�L

x�� , �10�

=2 ln�2L/2�G�free�� , �11�

where �free�= ���i
z=1�� is the state where all the spins point

in the z direction. It turns out that the latter state is the
vacuum of Jordan-Wigner Fermion and that the scalar prod-
uct in Eq. �11� can be obtained as a particular case of Eqs. �7�
and �8�. At the critical point ��=1�, the result is particularly
simple5

|i〉

j = 1j = 2j = 3

j = 2n
. . . . .

Ly

2 → ∞

FIG. 4. �Color online� 2n Ising models glued together at their
boundary �“Ising book”�. In our case, each “page” has periodic
boundary conditions along the horizontal axis and is semi-infinite in
the vertical direction. Figure 1 corresponds to two pages �n=1�.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.5 1 1.5 2

r n
(µ
=1
)

n

ln(2)

ICTF L=4..10
ICTF L=8..14
ICTF L=22..28
ICTF L=38..44

Triangular L=6..12
Square L=6..12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-1 -0.5 0 0.5 1
(n-1)L0.25

FIG. 5. �Color online� Subleading constant rn of the Rényi en-
tropy of the Ising chain �ICTF, at �=1� and classical Ising models
�triangular and square lattice, at T=Tc� as a function of the Rényi
parameter n. The �slow� convergence toward a step function can be
observed. Inset: when plotted as a function of �n−1�L0.25, the data
collapse reasonably well onto a single curve. For each value of n, rn

is obtained by fitting the data for Rn�L� to �aL+rn+bL−1+cL−2

using four system size: L, L−2, L−4, and L−6, as indicated.
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�G�free� = �
j=0

L/2−1

cos
�2j + 1��

4L
�12�

and leads to the following exact expression of the
n= 1

2-Rényi entropy:

R1/2�L,� = 1� = L ln 2 + 2 �
j=0

L/2−1

ln cos
�2j + 1��

4L
. �13�

Finally, an Euler-Maclaurin expansion gives the desired
finite-size scaling with a vanishing constant r1/2

R1/2�L,� = 1� = a1/2L + r1/2 + o�1� , �14�

a1/2 =
2K

�
, �15�

r1/2 = 0, �16�

where K�0.91596559 is Catalan’s constant.
The constant term in −ln�G � free� has already been studied

in Ref. 5. The situation where �G� is the ground state of an
antiferromagnetic spin-1

2 XXZ chain has also been
considered.5,17–21 Such a scalar product is closely related to
the notion of quantum fidelity.17 In terms of a classical 2D
Ising model, −T ln�G � free� is the boundary contribution to
the free energy of a semi-infinite Ising model with free
boundary conditions imposed at the edge. At the critical
point, this is a well-understood quantity from boundary CFT,
and the subleading constant r1/2 corresponds to −2 ln g,
where g is the ground-state degeneracy discussed by Affleck
and Ludwig.11 In the present case of the Ising model, r1=0 is
in agreement with gfree=1.11,22 This result has also been
checked numerically in Ref. 23.

C. Critical behavior in the vicinity of n=1

The results concerning the subleading constant rn��=1�
are summarized in Fig. 5. The behavior of rn��=1� has some
similarity with that of r1���: the curves interpolates between
0 and ln2 with a slope at n=1 �respectively, �=1� which
increases as a function of the system size. Here again, it

appears that the data for different values of n and L collapse
onto a single curve when plotted as a function of �n
−1�L0.25 �inset of Fig. 5�. The error bar on the exponent 0.25
are unfortunately large and difficult to estimate, but it indi-
cates �a rather slow� divergence of the slope �rn /�n �n=1 when
L increases. rn has also been computed for the classical Ising
models on the square and triangular lattices, as in Sec. II A.
The inset of Fig. 5 shows that the rn obtained from the cor-
responding transfer-matrix calculations are in good agree-
ment with those calculated from the ground state of the
ICTF. This is a strong indication that, in a scaling region
around n=1, rn defines a universal curve. The analogy be-
tween the effects of � and n suggests that n−1 is a “rel-
evant” perturbation: going slightly below �respectively,
above� n=1 induces a drastic change in rn��=1�, which im-
mediately �when L=�� goes to 0 �respectively, ln2�, as in the
high �respectively, low� temperature phase of the 2D Ising
model.

D. Vicinity of n= 1
2

The value n= 1
2 can be treated exactly, as explained in Sec.

IV B. However, the free-fermion calculation does not extend
away from n= 1

2 . Still, at n=0.5 we observe �numerically� a
crossing of the curves corresponding to different values of L
�see Fig. 6�. This phenomenon, also observed at n=1, is
reminiscent of a critical behavior, where the deviation away
from n=1 /2 would play the role of an irrelevant perturbation
away from a fixed point. The data can also be collapsed onto
a single curve, when the y axis is multiplied by a factor
�L0.6. However, contrary to the case n=1, this result indi-
cates a reasonably fast convergence toward rn=0 in the vi-
cinity of n=1 /2 �see the inset of Fig. 6�.

V. DISCUSSION AND CONCLUSIONS

In the present Ising models, rn��� seems to take only
three discrete values. For example, in the critical case, we
find

TABLE II. Rényi entropy R2�L ,�=1� of the critical Ising chain in transverse field as a function of the
system size L. The subleading constant r2��c� is extracted using three different fits �same as in Table I�: r2

�1�

is obtained by a fit to R2�L��aL+r1+bL−1 using the three following system sizes: L ,L−2,L−4. r2
�4� is

obtained by a fit to R2�L��aL+r1+bL−1+ ¯eL−4 using the six system sizes L ,L−2, . . . ,L−10. r2
�5� is

obtained by a fit to R2�L��aL+r1+bL−1+ ¯ fL−5 using the seven system sizes L ,L−2, . . . ,L−12. a is the
coefficient of the extensive �and nonuniversal� term, extracted from the seven-point fit above. These data
show that r1 converges to ln2 �limit L→��. Similar results, with an even faster convergence, show that
rn�2��c�=ln�2�. With the present systems sizes and the present machine accuracy, adding more terms in the
1 /L expansion does not increase the accuracy on r2.

L R2�L� a2 r2
�1� / ln 2 r2

�4� / ln 2 r2
�5� / ln 2

20 4.95205232373074 0.2138075040 0.9989748222 0.9999928713 0.9999877126

28 6.66741530818944 0.2138074244 0.9996525352 0.9999971726 0.9999989449

36 8.38060934985332 0.2138074200 0.9998432968 0.9999991645 0.9999998996

44 10.0928119559937 0.2138074203 0.9999165184 0.9999996643 0.9999997718
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rn�� = 1� = � 0, n � 1

0.2543925�5� , n = 1

ln 2, n � 1.
� �17�

Similar nontrivial analytic behavior have already been re-
ported for other models.24–26 This is quite different from
other models described in terms of a free field compactified
�with radius R� in the long-distance limit. In that case, which
is better understood from a field-theory point of view, the
system describes a line of fixed points and the subleading
constant rn�R� continuously varies along that critical line27,28

rn�R� = ln R −
ln n

2�n − 1�
. �18�

We have discussed how the special values n= 1
2 and n

=� are related to the g factors associated to free and fixed
boundary conditions of the Ising model. But so far, we do not
know how to understand rn=1 for the critical Ising model
using CFT. This is certainly an interesting question for future
studies. Up to now, the replica trick has been a very success-
ful tool for extracting such universal quantities, especially in
one-dimensional quantum spin chains.29,30 However, it seems
�see Secs. IV A and IV C� that this method cannot be applied
to the Ising critical point for our quantity. This makes the
analytical computation of rn=1 all the more challenging. It is
tempting to conjecture that crossings for rn�L� are observed
whenever the underlying probabilities, 	pi���n describe a
conformally invariant setup. It is indeed the case at n=1 /2
�Ising boundary with free boundary conditions�, but it is also
realized for n=1, since it correspond to the bulk probabili-
ties. We also expect that the nonanalytical behavior of rn in
the vicinity of n=1 could be a generic feature of all minimal
models. Finally, it would be interesting to investigate pos-
sible connections with the theory of line defects in confor-
mally invariant systems.31,32
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APPENDIX: PROBABILITY OF A SPIN CONFIGURATION

We consider an Ising chain in transverse field

H = − ��
j=0

L−1

� j
x� j+1

x − �
j=0

L−1

� j
z. �A1�

We assume L to be even, as well as periodic boundary con-
ditions �L

x =�0
x. We wish to find the ground state �G� of this

Hamiltonian and to compute all of his components in the
basis of the eigenstates of the � j

z.

1. Diagonalization

As is well known, H can be expressed in terms of free
fermions, using the Jordan-Wigner transformation

� j
x + i� j

y = 2cj
† exp�i��

l=0

j−1

cl
†cl� , �A2�

� j
z = 2cj

†cj − 1, �A3�

where the c ,c† satisfy the canonical anticommutation rela-
tions �cj ,c�

†�=
 j�. This allows to write the Hamiltonian as a
quadratic form

H = − �
j=0

L−1

�2cj
†cj − 1� − ��

j=0

L−1

�cj
† − cj��cj+1

† + cj+1� ,

�A4�

where the fermions are subject to boundary condition

cL
† = − exp�i�N�c0

†, N = �
l=0

L−1

cl
†cl. �A5�

The parity operator P commutes with H

P = �
j=0

L−1

� j
z = exp�i�N� = � 1, �A6�

and because of Perron-Frobenius theorem, the ground state
lies in the sector P=+1. Therefore, fermions are subjected to
antiperiodic boundary conditions cL

† =−c0
†. H can finally be

diagonalized by a Bogoliubov transformation

cj
† =

1
�L

�
k

eikj�cos �kdk − i sin �kd−k
† � , �A7�
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FIG. 6. �Color online� Subleading constant rn of the Rényi en-
tropy of the Ising chain �at the critical point �=1�, in the vicinity of
n=0.5. Inset: subleading constant multiplied by L0.6 as a function of
�n−0.5�.
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k � ��2l + 1��/L�− L/2 � l � L/2 − 1� , �A8�

sin 2�k =
� sin k

�1 + 2� cos k + �2
, �A9�

cos 2�k =
1 + � cos k

�1 + 2� cos k + �2
. �A10�

The new fermions operators dk ,dk
† satisfy the necessary an-

ticommutation relations and diagonalize H

H = �
k

�k�dk
†dk − 1/2� , �A11�

�k = 2�1 + 2� cos k + �2. �A12�

�k�0 ensures that the ground state �G� is the vacuum �0� of
the dk.

2. Exact formulas for the spin probabilities

We define Pj
� as the projector onto the ��= �1� j

z state

Pj
+ = cj

†cj, Pj
− = cjcj

†. �A13�

pi is then given by

pi = p��0, . . . ,�L−1� = �0�P0
�P1

�, . . . ,PL−1
� �0� . �A14�

Using Wick’s theorem, this correlator reduces to a Pfaffian.
To compute it, we need to calculate the four types of con-
tractions �cj

†c��, �cjc�
†�, �cj

†c�
†�, and �cjc��, which can be done

using Eq. �A7�. It is worth noticing that all these correlators
are real in this particular model. We write a generic projector
as

Pj
� = f j

†f j �A15�

with f j
†=cj

† for �=+1 and f j
†=cj for �=−1. Then

pi
2 = �f0

†f0f1
†f1, . . . , fL−1

† fL−1�2. �A16�

=�f0
†f1

†, . . . , fL−1
† f0f1, . . . , fL−1�2, �A17�

=Pf2� A B

− B − A
� , �A18�

where A is antisymmetric, B is symmetric, and Pf denotes the
Pfaffian. The matrix elements of A and B are

Aj� = �f j
†f�

†�, � � j , �A19�

Bj� = �f j
†f�� . �A20�

Using the relation Pf2=det, Eq. �A18� simplifies into

pi
2 = det� A B

− B − A
� , �A21�

=det�A + B B

0 B − A
� . �A22�

Equation �A22� follows from Eq. �A21� by adding the sec-
ond column to the first and then the first row to the second.
Finally,

pi = det�A + B� = det M , �A23�

where M is a L	L matrix with elements

Mj� = �f j
†�f�

† + f��� , �A24�

=
1

2

 j� +

� j
z

2L
�

k

cos�k�j − �� + 2�k� . �A25�

At the critical point ��=1�, �k=k /4 and the matrix elements
simplify even further

Mj� =
1

2

 j� +

�− 1� j−�� j
z

2L sin���j − � + 1/2�/L�
. �A26�
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